
Redbooks Paper

WebSphere Message Broker V6,
Best Practices Guide:
Bullet Proofing Message Flows

If you do not know what you are trying to accomplish, the task is even harder to do. If you do
not know how to do the task, it is even more difficult. How many times have you started to
develop a solution before understanding the requirements — input data formats, the arrival
rates, processing needs, and the expected output? How much do you really know about the
tools that you are using and the full power that those tools can bring to the solution? To make
the best choices when designing and implementing message flows, you need a clear
understanding of the requirements and the power of the tools that you are using.

Message flows should be bullet proof, meaning that the design should provide the required
functions and should also prevent errors from disrupting normal operations. For example, a
message flow is bullet proof when:

� A problem is recognized early and its impact is minimized.

� A problem is diagnosed on the fly and corrective action taken.

� Information about what was happening at the point of failure is collected and recorded.

� The message flow takes proactive steps to notify someone about the problem with details
about the problem.

This paper examines some of the capabilities of WebSphere® Message Broker and shows
how to include these capabilities in your message flows. We use variations on a sample
message flow using an MQInput node, several Compute nodes, and MQOutput nodes to
show error path options, how the broker handles errors in various nodes, and the information
available for analysis. We do not discuss all possibilities and options in this paper. Many of
the discussion points rely heavily on, and have borrowed information that is provided in, the
WebSphere Message Broker documentation and help files. When you need more detail or
when questions arise, refer to this material.

Geert Van de Putte
Dean Keister
© Copyright IBM Corp. 2006. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Error handling principles
The following are the main principles used to develop bullet proof message flows:

1. Create a backup queue and set a backout threshold on the input queue.

In many cases, a backup queue can help you know where to look for a failed message.

2. Place most of your error handling in the Catch flow of the MQInput node to contain most of
the general purpose error recording and notification.

Using the Catch flow of the MQInput node puts common error handling in one place and
leaves Failure flows on Compute nodes and Catch flows on TryCatch nodes so that you
can provide specific actions in response to individual situations.

3. Put a Throw node at the end of the Catch flow.

You should put a Throw node at the end of the Catch flow to backout any uncommitted
work and to leave a record in the Event log.

4. Let someone know.

Remember, when you provide a Catch flow or Failure flow, you are assuming total
responsibility. You should always let someone else know what you are doing in regards to
error handling.

Your flow design can be simple or quite complex. The options for the MQInput node are
extensive because this node must deal with persistent and non-persistent messages and with
transactional and non-transactional flows. The outcome can also be impacted by
configuration options for WebSphere MQ. Because the choice is yours, there are no fixed
rules. However, there are design options and other factors to consider when designing each
message flow.

Design considerations
The following are a number of design considerations that you can apply when designing a
message flow:

� Connect the Failure terminal of any node to a sequence of nodes that processes the
node's internal exception (the Failure flow).

� Connect the Catch terminal of the input node or a TryCatch node to a sequence of nodes
that processes exceptions that are generated beyond it (the Catch flow).

� Insert one or more TryCatch nodes at specific points in the message flow to catch and
process exceptions that are generated by the flow that is connected to the Try terminal.

� Include a Throw node or code an ESQL THROW statement to generate an exception.

� Ensure that all messages that are received by an MQInput node are processed within a
transaction or are not processed within a transaction.

� Ensure that all messages that are received by an MQInput node are persistent or are not.
2 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

Understand the flow sequence
When an exception is detected within a node, the message and the exception information are
propagated to the node's Failure terminal. If the node does not have a Failure terminal or if it
is not connected, the broker throws an exception and returns control to the closest previous
node that can process the exception. This node can be a TryCatch node or the MQInput
node.

A message is propagated to a Catch terminal only if it has first been propagated beyond the
node (for example, to the nodes that are connected to the Out terminal).

If an MQInput node detects an internal error, its behavior is slightly different. If the Failure
terminal is not connected, it attempts to put the message to the input queue's backout
requeue queue or (if that is not specified) to the dead letter queue of the broker's queue
manager. If a message cannot be put to the specified queue, a loop can occur.

If you do not connect the Catch terminal of the MQInput node, you can connect the Failure
terminal and provide a Failure flow to handle exceptions that are generated by the node. The
Failure flow is invoked immediately when an exception occurs in the MQInput node.

The MQInput Failure flow is also invoked if an exception is generated beyond the MQInput
node in either Out flow (when the Catch terminal is not connected) or a Catch flow, if the flow
is transactional or the message is persistent and if the reinstatement of the message on the
input queue causes the backout count to reach the backout threshold.

Other considerations to keep in mind
Other considerations for your message flow include the following:

� If you connect a Failure or Catch terminal in any node, you are indicating that the flow
handles all exceptions that are generated and passed to the flow. The broker performs no
rollback and takes no action unless there is an exception within that flow. If you want any
rollback action after an exception has been raised and caught, you must provide this in the
flow.

� When a message is propagated to the Failure or Catch terminal, the node creates and
populates a new ExceptionList with information about the error. The ExceptionList is
propagated as part of the message tree.

� The MQInput treats transactional and non-transactional messages differently.

� If you include a Trace node that specifies $Root or $Body, the complete message is
parsed. This might generate parser errors that are not otherwise detected.

� If a node propagates a message to a Catch flow and another exception occurs that returns
control to the same node again, the node handles the message as though the Catch
terminal is not connected.

� If you do not connect either Failure or Catch terminals of the MQInput node, the broker
provides default processing.

� If you have a common procedure for handling particular errors, you might find it useful to
create a subflow that includes the sequence of nodes that is required. Then, you can
include this subflow when you need that action to be taken.
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 3

What happens when exceptions occur
The rules controlling the paths taken and what information is available when errors occur is
complex and can be confusing. What happens and what information is available depends on
where the error occurs, what nodes are used, which terminals are wired, whether the flow is
transactional or the message persistent, and if there are multiple errors. Each of these factors
can affect the results.

To see how these error-handling principles work with real message flows, we use the sample
message flow shown in Figure 1 and see what happens with a single error when different
nodes are present with different Failure and Catch terminal connections. We also look at what
happens when additional errors occur in Catch or Failure flows.

Possible error paths
Figure 1 shows the message flow that is used to demonstrate various error paths. The
specific path traversed is based on where errors occur, what terminals are connected, the
transactional state of the message flow, and the persistence of the message.

The notation in Figure 1 allows for a number of different message flows and indicates the
following:

� The dashed lines between terminals indicate that in some examples there is a connection
between terminals and in others there is no connection.

� The nodes that have the red x icon indicate points where errors might occur in different
examples.

� The dashed box indicates that the TryCatch node might or might not be present in a
particular example. (This notation becomes more clear when we look at the cases in
detail.)

Figure 1 Sample message flow
4 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

If there are no errors in the flow, an MRM message placed on the REDIN queue is
transformed to XML and the results are placed on REDOUT. It does not matter if any Failure
or Catch terminals are connected because there are no errors.

To examine what happens to the Environment and LocalEnvironment trees, each Compute
node modifies the Environment and LocalEnvironment variables. For example, the Compute
node First creates a LocalEnvironment variable called UserData.Path and an Environment
variable called UserData.Path. Each subsequent node adds its name to the path so that a
trace of these variables at the end of a successful execution shows the path that the message
flow has taken (Environent.Variable.UserData.Path = 'First-ToXML-Work').

Failure outcomes
By examining the possible failure scenarios, you find there are 41 possible error paths. The
good news is that the number of different outcomes for the paths is a more manageable nine.
Each path has a specific outcome for the Environment tree, the LocalEnvironment tree, the
ExceptionList tree, the Event log, and the Flow Results. When designing a failure flow for
Failure or Catch flows, you must understand the path that got you there so that you know
what information is available. The flowchart in Figure 2 shows the conditions that lead to
these different outcomes.

The Environment and LocalEnvironment trees might contain information, an ExceptionList
tree might be attached, the Event log might be updated, there might be a message placed on
the backout queue, there might be a loop, and a variety of Failure or Catch flows might be
executed. The outcome all depends on which terminals are connected, where the error or
errors occur, whether there is a TryCatch node, the transactional nature of the flow or the
persistence state of the message, and the application logic within the Failure flow.

The flowchart in Figure 2 allows you to locate a specific case based on a number of design
and configuration options. When an error occurs, the specific case is determined by your flow
design. When you design a flow and errors occur, a specific path applies, and there is a
unique outcome. Table 1 on page 7 describes each outcome.
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 5

Figure 2 Failure paths flowchart

Examination of outcomes
Table 1 shows the state of the Environment, LocalEnvironment, and ExceptionList trees. In
addition, the Flow Results column shows the result of the broker execution. There is also an
indication of what is in the Event Log. Although the Event Log is not accessible, knowing what
is provided might influence what additional information can be useful for the error handling
flow to provide.
6 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

Table 1 Outcomes for various message flows

Environment
Variable
Changes

Local
Environment
Variable
Changes

ExceptionList
Tree

Flow Results Event Log

Case 0 - No errors N/A N/A N/A Message put to
REDOUT

Nothing in Event
Log

Case 1 - No Failure or
Catch terminal wired
with TryCatch node in
flow

N/A N/A N/A Message
discarded

Nothing in Event
Log

Case 2 - Flow is
non-transactional and
message is
non-persistent, no
Failure or Catch
terminals wired and no
TryCatch node in flow

N/A N/A N/A Message
discarded

All errors
encountered in
Event Log

Case 3 - Flow is
transactional or
message is persistent,
no Failure or Catch
terminals wired, and no
TryCatch node in flow

N/A N/A N/A Message put on
Backout Queue
(BOQ) / Dead
Letter Queue
(DLQ)

All errors
encountered and
indication of
message move to
BOQ/DLQ in
Event Log

Case 4 - Problem
putting a message to
the BOQ / DLQ

N/A N/A N/A Retry Loop All errors
encountered and
failure of
message move to
BOQ/DLQ in
Event Log

Case 5 - Compute node
Failure flow handles
error

As modified As modified
before Error
node

Describes
Error

Error node
Failure flow

Nothing in Event
Log

Case 6 - TryCatch
Catch flow handles
error

As modified As modified
before
TryCatch
node

Describes
Error

TryCatch Catch
flow

Nothing in Event
Log

Case 7 - MQInput Catch
flow handles error

As modified Discarded Describes
Error

MQInput Catch
flow

Nothing in Event
Log

Case 8 - MQInput Catch
flow handles last error

As modified Discarded Describes last
Error

MQInput Catch
flow

Compute error
and detection of
additional error in
Event Log

Case 9 - MQInput
Failure flow handles last
error

Discarded Discarded Indicates failed
message
dequeued

MQInput Failure
flow driven

All errors
encountered in
Event Log
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 7

Case 1 and Case 2 show what happens when the Work node in Figure 1 on page 4 fails but
with no Failure or Catch terminals connected:

� Case 1 - No Failure or Catch terminals wired with TryCatch node in flow. The message is
discarded, even if the message is persistent or the flow transactional and nothing is
placed in the Event log! It is assumed that the message flow handles the error itself.

� Case 2 - Flow is non-transactional and message is non-persistent, no Failure or Catch
terminals wired, and no TryCatch node in flow. The message is discarded and entries are
placed in the Event log.

Case 3 and Case 4 highlight backout processing. Backout queue processing only comes into
play when the flow is transactional or the message is persistent. If a backout queue (BOQ) is
specified, backout rules apply to that queue and the dead-letter queue (DLQ) is never
considered. So the cases studied here only reference a backout queue where appropriate.

� Case 3 - Flow is transactional or message is persistent, no Failure or Catch terminals
wired, and no TryCatch node in flow. The Event log is updated and the message is placed
on the backout queue.

� Case 4 - A message would normally be put on the backout queue but there is a problem.
The Event Log is updated, but the message cannot be discarded. So, it is continually
reinstated on the input queue. The flow stays in this loop until either the cause of the
original failure situation clears, allowing the message to be processed, or until the backout
queue finally accepts the message, at which time Case 3 processing takes place.

Under normal circumstances, a failure is passed to either a Failure or Catch flow. Case 5
through Case 7 cover the situations where these flows successfully process the original error:

� Case 5 - Compute node Failure flow handles error. Nothing is placed in the Event Log,
and the Failure flow is responsible for all error recovery. This responsibility includes
committing or backing out any updates, putting entries in the Event Log (via Trace node),
notifications, and so on.

A review of Case 5 in Table 1 shows that the Environment variable contains all changes
made up to the point of the failure. So, any changes made prior to the error within the node
Work are available to the node DecodeError. However, the LocalEnvironment variable only
contains changes made prior to the node Work. So, any changes made within the node
Work are lost. In addition, an ExceptionList tree is added to the message tree and can be
examined within the Failure flow.

� Case 6 - TryCatch Catch flow handles error. This case is similar to Case 5. Nothing is
placed in the Event Log and the Catch flow is responsible for all error recovery.

� Case 7 - The MQInput Catch flow handles the error. This case is similar to Case 5.
Nothing is placed in the Event log and the Catch flow is responsible for all error recovery.

There might be additional errors in Failure or Catch flows after the original error, which are
covered in Case 8 and Case 9, as well as Case 2 through Case 4.

� Case 8 - The MQInput Catch flow handles the last error. The Event Log contains
information about the prior error, while the ExceptionList contains information about the
last error. The most probable situation is when there is an error in the Failure flow of the
Work node with no TryCatch node, but the MQInput node Catch terminal is wired and its
flow is successful. Other paths leading to Case 8 are shown in Figure 2 on page 6.

� Case 9 - The MQInput Failure flow handles the last error. The Event Log contains all
errors. If the MQInput Failure flow is successful, you have Case 9. If the MQInput Failure
flow fails, backout processing applies (Case 3 and Case 4). Other paths leading to Case 9
are shown in Figure 2 on page 6.
8 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

First failure data capture
Anticipating possible points of error allows for identifying and capturing data that would aid in
analysis should an error occur. With this analysis, you can then put in place a plan for keeping
track of this data. A useful place to put this information is in the Environment tree,
Environment.Variables.UserData, as shown in Figure 4 on page 13. Planning for how this
data might be used — either by an application or a person — can help the designer provide
better failure data.

Application data
When errors occur, there might be information that can help clarify what the error is and what
the message flow was doing at the time of the error. By examining Table 1 on page 7, you can
see that when a Compute node Failure flow or a Catch flow gets control, the Environment tree
contains all modifications made prior to that failure. With careful design, information relevant
to flow execution can be placed into this tree throughout the message flow so that the
information can be available to a Failure flow or Catch flow. Useful information might include
execution paths (as shown in the Sample Message Flow described earlier), input from
database queries, results of calculations, records processed, and so on. What data should be
captured is dependent upon the application. However, the goal is to try to capture the state of
the application at the point of failure.

The ExceptionList tree
In addition to data that is provided by the application, the broker might also provide useful
information. Table 1 on page 7 indicates that the ExceptionList tree is populated with
information about the last error when a Compute node Failure flow or a Catch flow gets
control. Code might be provided to attempt recovery for certain types of errors. Example 1
shows how ESQL code loops through the ExceptionList tree and keeps the error Label,
Number, and Text in the Environment tree.

Example 1 Processing the ExceptionList

declare abc REFERENCE TO InputExceptionList.*[1];
WHILE abc.Number IS NOT NULL do
set Environment.Variables.BrokerData.LastError.Label = abc.Label;
set Environment.Variables.BrokerData.LastError.Number =
cast(abc.Number as char);
 set Environment.Variables.BrokerData.LastError.Text = abc.Text;
 set Path = Path || '.*[<]';
 -- Move start to the last child of the field to which it
 -- currently points
 MOVE abc LASTCHILD;
END WHILE;

A trace of the Environment tree after adding user data and extracting information from the
ExceptionList tree might show output similar to that shown in Example 2.

Example 2 Trace output of the Environment tree

(0x01000000):Variables = (
 (0x01000000):UserData = (
 (0x03000000):Trail = 'First-ToXML-CreateError-Decode Error'
 (0x03000000):RecCount = '1'
)
 (0x01000000):BrokerData = (
 (0x03000000):Label = 'OneRow.Simple.Work'
 (0x03000000):Number = '2450'
 (0x03000000):Text = 'Divide by zero calculating '%1 / %2''
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 9

)
)

Error recovery considerations
Armed with knowledge of error paths and the information that is available for examination, it is
time to see what actions you can use when handling errors. Your application might detect
errors in the data content that should be noted and isolated but that might not end the flow. In
this situation, you might want to continue processing. In other situations, you might want to
perform recovery or terminate the flow gracefully. You must decide when you design the
message flow which recovery action is appropriate. However, you should also consider
recording the information about the error condition and performing some error notification to
make it easier for someone to analyze the problem and to take appropriate action.

Attempt recovery
Your application might try to recover from certain errors (for example, an inconsistency of
some type in the input data). The Compute node that detects this error might record
information in the Environment tree (for example,
Environment.Variables.BrokerData.Number) and throw an error. Then, in a Failure flow or
Catch flow, you might have an error handling error flow to extract the error number for the last
error in the ExceptionList tree and route the message to different error handling procedures
based on the error number. In your error handling procedure, you could then examine the
Environment tree and take appropriate action.

Message commit or backout
As a rule of thumb, issue a Throw node as the last node of your Failure flow or Catch flow to
backout any uncommitted messages on a queue. When a message is put on a queue, it is not
available until committed. This commit occurs immediately if the message flow is
non-transactional, the output queue has its Transactional attribute set to No, or the Failure
flow or Catch flow ends without a Throw node. In other cases, the message is backed out,
and the message is discarded.

Clean up after failure
If a message flow is transactional and you are handling errors in a Failure flow or Catch flow,
you take full responsibility for the transaction. This responsibility might include committing
database updates or committing messages on queues. If you want to backout all
uncommitted database updates or remove uncommitted messages from a queue, you must
include a Throw node as the last node of your Failure flow or Catch flow. If you want to
commit all updates, then end the flow without throwing an error.

Error notification considerations
Providing notification of an error and documenting its occurrence is a very important aspect of
the message flow process as well. At times, it can be very difficult to re-create the error
situation. However, by providing detailed information about the error when it happens, the
error might be solved easier and quicker.

Trace to the Event Log
Probably the simplest action to take regarding documentation of the error is to augment the
Event log with information pertinent to the application. If the application is recording
10 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

information in the Environment tree, this information might be useful to help in problem
determination. Examples of this type of trace might include the list of nodes that executed
prior to the failure or state information pertinent to the application. Figure 3 shows an example
of Trace node properties for sending information to the Event log and the Event log entry. The
choice of data is determined by the designer of the flow.

Figure 3 Trace to Event Log

Throw an exception
When you use the Throw statement or include a Throw node, an entry is placed in the Event
log. If you use the Throw statement, you can provide application data as part of the Event log
parameters. However, if the Failure terminal of the Compute node throwing the error is
connected and the Failure path ends successfully, no rollback actions are invoked because
the processing in the Failure path is part of the same unit of work. Adding a Throw node or a
Throw statement at the end of the Catch flow avoids this behavior because it forces a
rollback. If you use a Throw node, backout actions are performed, but you cannot include
data from within the flow in the Event log. Using Trace and Throw gives you a variety of ways
to control the actions and information needed.

Put a message on a queue
When designing your Failure or Catch flow, you might want to put a message to a queue as
part of your error handling. The presence of this message might enable a program that
monitors the queue to perform some notification. If the message flow is transactional or the
message persistent, a message is put on the backout queue if defined and a Throw node is
encountered. However, there might be cases when no message is put on the backout queue
or this might not be all that is needed, for example:

� There is no backout or dead-letter queue defined.

� A message flow is transactional or the message persistent and no errors are thrown.

� A message flow is non-transactional and the message non-persistent.

� In some production environments, only certain users might be allowed access to the
broker queue manager and queues. So, any messages placed on the backout queue
might not be available to those who need to perform problem determination.

In these situations, it might be useful to put a message that contains diagnostic information to
a queue that is available to those who can use it for problem determination. This queue might
need to be a remote queue, but it allows the responsible group more control for notification
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 11

and faster access to information. How to use Trace and Throw nodes and how to put a
message to a queue is explained in “MQInput node catch flow design” on page 12.

Pro-active notification
You should strongly consider proactive notification of failures. Recording error information is
useful, but action can be taken only when someone becomes aware of the failure. There are
two common options and a third, more sophisticated, option:

� Third-party products

Third-party products provide standard mechanisms for detection of messages in queues
(for example, in the dead-letter queue) with many built-in actions such as paging or
sending e-mail messages. However, these tools are often oriented to production systems
and the organizations that support them. It might be difficult for the group that is
responsible for the message flows to tailor the action of the third-party tool for their specific
needs or have these tools available in development and test systems.

� Send an e-mail

As a companion to third-party products, or as an alternative, consider using the e-mail
SupportPac™. It can usually be installed and configured to work with minimal outside
assistance. The SupportPac can be used in development, test, and production
environments and provides detailed First Failure Data for problem determination, in many
cases eliminating the need to re-create errors. With experience gained during
development, the data captured can be evaluated and optimized to provide the best
possible information when promoted to the production environment. See “Using Sendmail”
on page 15.

� Start a Workflow

WebSphere MQ Workflow processes can be started by putting an XML message onto a
queue. With planning, a workflow process can be started to initiate recovery and analysis.
This workflow process can be used in combination with the other notification techniques
and is a useful technique for meeting service level commitments.

Performance considerations
Performance requirements can directly influence the design of your message flow. In
situations where performance is of prime importance, avoid Trace nodes or saving failure
information in the main path. Instead, record information in the Environment tree and leave
the rest to a Catch or Failure flow. If performance is critical, put minimum logic in the Catch or
Failure flow. As an alternative for providing more robust failure processing within the flow,
consider collecting information, putting it into a message, and putting that message on a
queue that is processed by a separate message flow. This process frees up the production
flow to handle more messages.

Putting it into practice
The examples that we discuss here are based on real-world experiences. We have, however,
sanitized them to protect any proprietary information and have simplified them to make the
bullet proofing points clear.

MQInput node catch flow design
The Catch flow shown in Figure 4 can be as general or as specific as needed. The designer
of this message flow placed some useful information in the Environment tree,
Environment.Variables.UserData, where the children of UserData contain information that
12 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

was deemed to be of value in error analysis, such as the nodes that were executed and state
variables.

Figure 4 MQInput node catch flow

The Decode Catch ESQL decodes the ExceptionList tree and builds an XML message
containing user data and the ExceptionList tree. First, this message is put to an output queue.
Then, a Trace node puts an entry in the Event log followed by a Throw node to backout any
database changes and uncommitted messages.

One important point to remember is that if an error is thrown, any messages put on queues by
flows that are transactional are discarded when the Throw node is processed. To ensure that
this does not happen, set the Transaction mode to No as shown in Figure 5.

Figure 5 Set Transaction Mode in the MQOutput node

The message placed on REDFAIL contains information that the flow designer deemed
valuable for problem diagnosis. This queue might be remote, there might be a third-party tool
monitoring that queue, or there might be a message flow that picks up the message to
perform additional error recovery and notification, such as sending an e-mail. Using this
technique off loads the recovery actions to a separate flow and leaves the primary flow
available to process additional messages immediately.

Example 3 shows the ESQL from the DecodeCatch node decoding of the ExceptionList tree
and placing it in Environment.Variables.BrokerData. In addition, it updates the application's
trail of nodes held in Environment.Variables.UserData.Trail. Finally, it builds an output
message and builds a body that contains UserData and BrokerData, which are placed on the
REDFAIL queue.
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 13

Example 3 Decode the ExceptionList and build error message

-- Loop through the exception list children
declare abc REFERENCE TO InputExceptionList.*[1];
set Path = 'Environment.Variables.BrokerData';
WHILE abc.Number IS NOT NULL do
 -- keep track of the deepest error
 set Environment.Variables.BrokerData.LastError.Label = abc.Label;
 set Environment.Variables.BrokerData.LastError.Number = cast(abc.Number as char);
 set Environment.Variables.BrokerData.LastError.Text = abc.Text;
 -- record the error information in tree format
 EVAL('set ' || Path || '.' || FIELDNAME(abc) || '.Label = ''' || abc.Label ||
''';');
 --Error text might contain quotes so must replace one single quote (') with
 -- two single quotes ('') so EVAL interprets properly
 set work = abc.Text;
 set work = replace(work, '''', '''''');
 EVAL('set ' || Path || '.' || FIELDNAME(abc) || '.Text = ''' || work || ''';');
 EVAL('set ' || Path || '.' || FIELDNAME(abc) || '.Number = ''' || cast(abc.Number
as char) || ''';');
 set insertNo = insertBase;
 WHILE FIELDNAME(abc.*[insertNo]) = 'Insert' do
 EVAL('set ' || Path || '.' || FIELDNAME(abc) || '.Insert[' ||
 cast(insertNo - insertBase + 1 as character) || '].Text = abc.*[' ||
 cast(insertNo as char) || '].*[2];');
 set insertNo = insertNo + 1;
 END WHILE;
 set Path = Path || '.*[<]';
 -- Move start to the last child of the field to which it currently points
 MOVE abc LASTCHILD;
END WHILE;
set Environment.Variables.UserData.Trail =
coalesce(Environment.Variables.UserData.Trail, ' ') || '-Decode Error';
set Path = 'Environment.Variables.BrokerData';
CALL CopyMessageHeaders();
set OutputRoot.XML.Message.Environment.Variables.UserData = Environment.Variables.UserData;
set OutputRoot.XML.Message.Environment.Variables.BrokerData =
Environment.Variables.BrokerData;

Example 4 shows the body of the message built by the ESQL code shown in Example 3.

Example 4 Generated XML message

<Message>
 <Environment>
 <Variables>
 <UserData>
 <Trail>First-ToXML-CreateError-Decode Error</Trail>
 </UserData>
 <BrokerData>
 <LastError>
 <Label>OneRow.Simple.Work</Label>
 <Number>2450</Number>
 <Text>Divide by zero calculating '%1 / %2'</Text>
 </LastError>
 <RecoverableException>
 <Label>OneRow.Simple.Work</Label>
 <Text>Caught exception and rethrowing</Text>
 <Number>2230</Number>
 <RecoverableException>
 <Label>OneRow.Simple.Work</Label>
14 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

 <Text>Error detected, rethrowing</Text>
 <Number>2488</Number>
 <Insert>
 <Text>OneRow.CreateError.Main</Text>
 </Insert>
 <Insert>
 <Text>8.3</Text>
 </Insert>
 <Insert>
 <Text>SET k = 1 / CAST(OutputRoot.XML.Hi.One AS INTEGER);</Text>
 </Insert>
 <RecoverableException>
 <Label>OneRow.Simple.Work</Label>
 <Text>error evaluating expression</Text>
 <Number>2439</Number>
 <Insert>
 <Text>OneRow.CreateError.Main</Text>
 </Insert>
 <Insert>
 <Text>8.12</Text>
 </Insert>
 <Insert>
 <Text>1 / CAST(OutputRoot.XML.Hi.One AS INTEGER)</Text>
 </Insert>
 <RecoverableException>
 <Label>OneRow.Simple.Work</Label>
 <Text>Divide by zero calculating '%1 / %2'</Text>
 <Number>2450</Number>
 <Insert>
 <Text>1 / 0</Text>
 </Insert>
 </RecoverableException>
 </RecoverableException>
 </RecoverableException>
 </RecoverableException>
 </BrokerData>
 </Variables>
 </Environment>
 <LocalEnvironment/>
</Message>

This message contains significant information about the exact cause of the error — in this
case, a Divide by Zero error was encountered in the node Work using values 1/0. The
ExceptionList tree along with well thought out user data might be enough to solve the problem
or at least provide significant clues without the need to re-create the error.

Using Sendmail
Much of the information shown in the message created by the MQInput Catch Flow example
could appear in the Event log. However, someone must be alerted to the failure. Using the
Sendmail SupportPac to send someone an e-mail is a simple and inexpensive solution. You
can download this SupportPac at no charge from:

http://www-1.ibm.com/support/docview.wss?rs=203&uid=swg24000600&loc=en_US&cs=utf-8&lang=en

The notification is immediate and the data is at hand. Someone can be working on the
problem before most are even aware there was a failure. If the performance of this flow is
critical, you might consider building a separate message flow for sending e-mails and passing
a request message to it from this flow, as shown in Figure 6.
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 15

http://www-1.ibm.com/support/docview.wss?rs=203&uid=swg24000600&loc=en_US&cs=utf-8&lang=en

Figure 6 Using Sendmail in a message flow

The output message from DecodeCatch is in XML format. To be able to add this message to
the text of an e-mail, we first have to convert it to an MRM message with one field. Then, the
BldEmail node takes this field containing the XML message as a string and builds the e-mail
request. The Sendmail plug-in requires lines of the message to be no more than 1024
characters so the ESQL must enforce this line limit. An e-mail might look similar to that shown
in Figure 7.

Figure 7 Message flow generated e-mail

The e-mail can contain anything that you feel is appropriate. In this instance, the subject
contains a time stamp, and the body contains both summary information for the label that
detected the error and the text that shows the type of error. In addition, the full XML message
as shown in Figure 4 on page 13 is included. Example 5 shows the ESQL that was used to
build the Sendmail message.

Example 5 ESQL to prepare an e-mail message

CALL CopyMessageHeaders();
set OutputRoot.XML.Message.To = 'dkeister@centerprise.com';
set OutputRoot.XML.Message.From = 'dkeister@centerprise.com';
set OutputRoot.XML.Message.Subject =
substring(cast(CURRENT_TIMESTAMP as char) from 11 for 23) ||
16 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

 ' - Error in ' || coalesce(Environment.Variables.BrokerData.LastError.Label, 'unknown')
||

 ' - ' || coalesce(Environment.Variables.BrokerData.LastError.Text, 'unknown');
set msgbody = r.LFROW.ROW;
set i = position('</' in msgbody);
set j = position('>' in msgbody from i);
while i > 0 do

set j = position('>' in msgbody from i);
if j < 1024 then

set m = j;-- remember position of '>' for </ tag
set l = l + 1;-- index for checking next '</'

else
-- this '</' tag will go over the 1024 limit for sendmail
-- line length so put from the last remembered position
set OutputRoot.XML.Message.Body.Line[k] = left(msgbody, m);
set k = k + 1;
set msgbody = substring(msgbody from m + 1); -- clear out
set l = 1; -- reset

end if;
-- find next instance of closing tag. Eval required because of repeat
EVAL('set i = position(''</'' in msgbody from i REPEAT ' || cast(l as char) || ')');

end while;
set OutputRoot.XML.Message.Body.Line[k] = msgbody;

With this technique, when a failure is encountered, the message flow provides pertinent
information and pro-actively notifies someone about the problem.

Database recovery
When a message flow with database access first starts, a handle to the database is
established and cached. When a message arrives on the MQInput node this handle is used,
and the overhead of establishing a connection is avoided. If the database is shut down and
restarted or if the connection handle times out, the next time the flow receives a message, it
tries to use the handle that is no longer valid and a database error occurs. Other errors are
permanent and there is no recovery. In those situations when a new database handle is
required, you can stop or restart the message flow or re-drive the node accessing the
database. Figure 8 shows a representative flow.

Figure 8 Database recovery

To handle database errors in the AccessDB node, you must access the node's properties and
deselect Throw exception on database error.
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 17

Figure 9 Handling database exceptions

This allows you to now handle database errors. In the ESQL shown in Example 6, any
non-zero SQLCODE indicates an error. The information is gathered and an error is thrown to
drive the Failure flow.

Example 6 ESQL to handle database errors

/*
Action: Throw error 2962 for any DB error to drive failure terminal

I have found the following errors recoverable
SQL 3113 = EOF on communication channel (among many)
SQL 3114 = not connected to ORACLE
SQL 12571 = TNS packet writer failure

*/
set Environment.Variables.UserData.DataSelect[] = (

SELECT F.FEEDDEFID,
 F.HdrCount,
 F.BrokerHost,
 F.Work

FROM Database.MQIADMIN.FLOWCONTROL as F
WHERE F.FEEDDEFID = 'DEFAULT' or

 F.FEEDDEFID = Environment.Variables.UserData.FeedDefId);
if SQLCODE <> 0 then

set Environment.Variables.UserData.ErrCode = '2962';
set Environment.Variables.UserData.SQLSTATE = cast(SQLSTATE as char);
set Environment.Variables.UserData.SQLCODE = cast(SQLCODE as char);
set Environment.variables.UserData.SQLERRORTEXT = SQLERRORTEXT;
set Environment.Variables.UserData.SQLNATIVEERROR = cast(SQLNATIVEERROR as char);
throw USER EXCEPTION MESSAGE 2962 VALUES

(Environment.Variables.UserData.SQLSTATE,
 Environment.Variables.UserData.SQLCODE,
 Environment.Variables.UserData.SQLERRORTEXT,
 Environment.Variables.UserData.SQLNATIVEERROR,
 'FLOWCONTROL table access failure');

end if;
-- Put business logic here if database access is successful

If the Failure terminal simply connects to the In terminal, a loop occurs until the database
error clears. If the database error is permanent, the flow loops continuously. To prevent this
continuous looping, you must add some logic in the Failure flow. The Filter node checks the
error and performs loop control.
18 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

Example 7 ESQL for Filter node

-- If this is a 'caught' DB error then check retry processing
if Environment.Variables.UserData.ErrCode = '2962' then
-- Retry processing sets a retry count on the first entry and
-- drives the true terminal on each subsequent execution, the
-- retry count is decremented.

-- If the count does not go to zero, the true terminal is driven.
-- When the count goes to zero, the false terminal is driven.
if Environment.Variables.UserData.DBRetryCount is null then

-- if this is first retry,
-- Environment.Variables.UserData.DBRetryCount will be null

set Environment.Variables.UserData.DBRetryCount = 3;
return true;

else
-- if this is not the first retry, DBRetryCount will
-- contain a count.

if Environment.Variables.UserData.DBRetryCount < 1 then
-- if the retry count is exhausted, stop retry
return false;

else
-- decrement the DBRetryCount
set Environment.Variables.UserData.DBRetryCount =

Environment.Variables.UserData.DBRetryCount - 1;
return true;

end if;
end if;

else
return false;

end if;
RETURN TRUE;

If the error is not a database error, processing goes immediately to DecodeFailure. If this is
the first thrown database error, the Environment.Variables.UserData.DBRetryCount should
be null. It is set to the retry count 3 and control is passed back to the In terminal of the
AccessDB node. If the database access fails again, this time the DBRetry count variable is
decremented. This repeats until the connection is made successfully, in which case
AccessDB continues normal processing.

If the DBRetry count decrements to zero (0), the False terminal flow gets control and
DecodeFailure processing takes place. Notice that the variables that we use in this scenario
are saved in Environment.Variables.UserData. The database error conditions and retry
counts that are used in the Failure flow might be passed via an e-mail or other notification
technique if the failure is permanent. If the flow does recover from a Database error, logic
could be inserted in the Out flow of AccessDB to check fields in the UserData area and an
information e-mail sent that a database error occurred but that recovery was successful.

Conclusion
Anticipating and planning for errors can have near-term and long-term benefits. Error
handling is often an afterthought in many development cycles. However, it can become
critical quickly when errors occur in production environments. Solutions can be simple or
sophisticated, but you should consider your solutions right from the beginning. Bullet-proof
message flows will not only help solve development problems, they will help fine-tune for
production. A word of caution — it is easy to go overboard and over-design the solution.
Ensure that the discussion for error handling is a part of your normal development process.
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 19

Appendix: Retry processing
When the number of retries has reached the backout threshold limit, the message flow
attempts to propagate the message through the Failure terminal, if that is connected. If you
have not connected the Failure terminal, the node attempts to put the message to either the
backout or dead letter queue, if it is defined.

If the backout threshold has not been reached, the node gets the message from the queue
again. If this fails, this is handled as an internal error (described in “MQInput node catch flow
design” on page 12). If it succeeds, the node propagates the message to the Out flow.

If the backout threshold has been reached:

1. If you have connected the Failure terminal, the node propagates the message to that
terminal. You must handle the error in the Failure flow.

2. If you have not connected the Failure terminal, the node attempts to put the message on
an available queue, in order of preference:

a. The message is put on the input queue's backout requeue name (queue attribute
BOQNAME), if one is defined.

b. If the backout queue is not defined, or it cannot be identified by the node, the message
is put on the dead letter queue (DLQ), if one is defined.

c. If the message cannot be put on either of these queues because there is an MQPUT
error (including queue does not exist), or because they cannot be identified by the
node, it cannot be handled safely without risk of loss.

The message cannot be discarded. Therefore the message flow continues to attempt
to backout the message. It records the error situation by writing errors to the local error
log. A second indication of this error is the continual incrementing of the BackoutCount
of the message in the input queue.

If this situation has occurred because neither queue exists, you can define one of the
backout queues mentioned above. If the condition preventing the message from being
processed has cleared, you can temporarily increase the value of the backout
threshold (BOTHRESH) attribute. This forces the message through normal processing.
20 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Poughkeepsie Center.

Geert Van de Putte is a Consulting IT Specialist at the International Technical Support
Organization, Raleigh Center. He is a subject matter expert for messaging and business
integration and has nine years of experience in the design and implementation of WebSphere
Business Integration solutions. He has published several redbooks about messaging and
business integration. Geert has also taught several classes about these subjects. Before
joining the ITSO, Geert worked at IBM® Global Services, Belgium, where he designed and
implemented EAI solutions for customers in many industries. Geert holds a Master of
Information Technology degree from the University of Ghent in Belgium.

Dean Keister Dean Keister is Director, Business Integration at Centerprise Services, Inc. with
responsibility for design and development of systems that enable customers to integrate
business activities combining both new and existing applications in real time and to quickly
automate business processes across the enterprise. Before joining Centerprise, Dean held
technical and managerial positions in IBM with responsibilities for developing and deploying
computer networks, transaction processing systems, and messaging and queuing
middleware. He is an IBM Certified Solutions Expert for WebSphere MQ, IBM WebSphere
Message Broker, and WebSphere MQ Workflow.
 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows 21

22 WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an e-mail to:

redbook@us.ibm.com
© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 23

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:
IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™

IBM®
Redbooks™
SupportPac™

WebSphere®

Other company, product, or service names may be trademarks or service marks of others.

®

24 WebSphere Mesasge Broker V6: Best Practises Guide Bullet Proofing Message Flows

	WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing Message Flows
	Error handling principles
	What happens when exceptions occur
	First failure data capture
	Error recovery considerations
	Error notification considerations
	Putting it into practice
	Conclusion
	Appendix: Retry processing
	The team that wrote this Redpaper

	Notices
	Trademarks

